A quantitative index of substrate promiscuity.
نویسندگان
چکیده
Catalytic promiscuity is a widespread, but poorly understood, phenomenon among enzymes with particular relevance to the evolution of new functions, drug metabolism, and in vitro biocatalyst engineering. However, there is at present no way to quantitatively measure or compare this important parameter of enzyme function. Here we define a quantitative index of promiscuity (I) that can be calculated from the catalytic efficiencies of an enzyme toward a defined set of substrates. A weighted promiscuity index (J) that accounts for patterns of similarity and dissimilarity among the substrates in the set is also defined. Promiscuity indices were calculated for three different enzyme classes: eight serine and cysteine proteases, two glutathione S-transferase (GST) isoforms, and three cytochrome P450 (CYP) isoforms. The proteases ranged from completely specific (granzyme B, J = 0.00) to highly promiscuous (cruzain, J = 0.83). The four drug-metabolizing enzymes studied (GST A1-1 and the CYP isoforms) were highly promiscuous, with J values between 0.72 and 0.92; GST A4-4, involved in the clearance of lipid peroxidation products, is moderately promiscuous (J = 0.37). Promiscuity indices also allowed for studies of correlation between substrate promiscuity and an enzyme's activity toward its most-favored substrate, for each of the three enzyme classes.
منابع مشابه
Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms
Substrate specificity and selectivity of a biocatalyst are determined by the protein sequence and structure of its active site. Finding versatile biocatalysts acting against multiple substrates while at the same time being chiral selective is of interest for the pharmaceutical and chemical industry. However, the relationships between these two properties in natural microbial enzymes remain unde...
متن کاملEnzyme promiscuity: mechanism and applications.
Introductory courses in biochemistry teach that enzymes are specific for their substrates and the reactions they catalyze. Enzymes diverging from this statement are sometimes called promiscuous. It has been suggested that relaxed substrate and reaction specificities can have an important role in enzyme evolution; however, enzyme promiscuity also has an applied aspect. Enzyme condition promiscui...
متن کاملQuantifying and predicting the promiscuity and isoform specificity of small-molecule cytochrome P450 inhibitors.
Drug promiscuity (i.e., inhibition of multiple enzymes by a single compound) is increasingly recognized as an important pharmacological consideration in the drug development process. However, systematic studies of functional or physicochemical characteristics that correlate with drug promiscuity are handicapped by the lack of a good way of quantifying promiscuity. In this article, we present a ...
متن کاملCleavage Entropy as Quantitative Measure of Protease Specificity
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo protease...
متن کاملIncreased Enzyme Flexibility Doesn’t Necessarily Lead to Substrate Promiscuity
Copyright: © 2014 Raval SR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Understanding the molecular basis of substrate promiscuity shown by some enzymes has been quite elusive. Enzymes that catalyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 47 1 شماره
صفحات -
تاریخ انتشار 2008